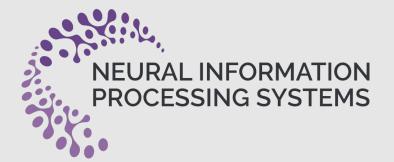
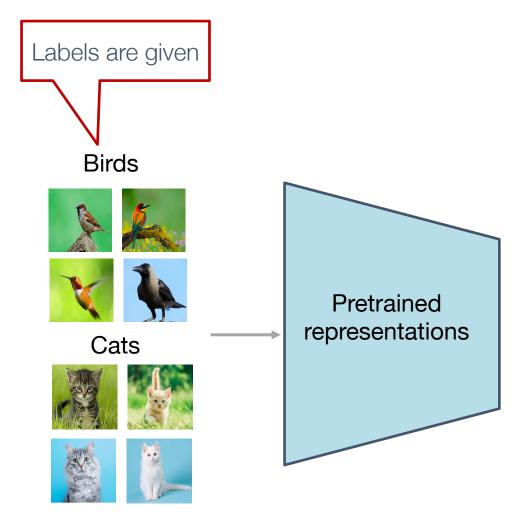
The Pursuit of Human Labeling

A New Perspective on Unsupervised Learning

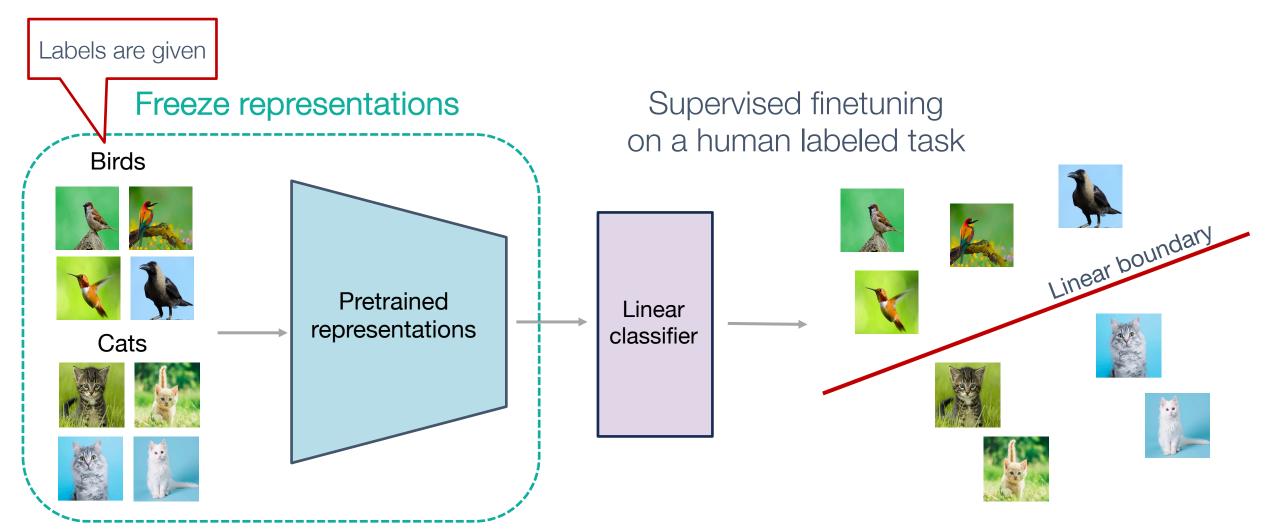
Artyom Gadetsky & Maria Brbić



Supervised Fine-tuning

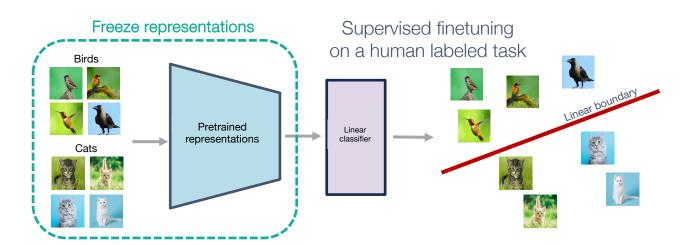


Supervised Fine-tuning



Assessing Generalization of Supervised Fine-tuning

Train on the training split



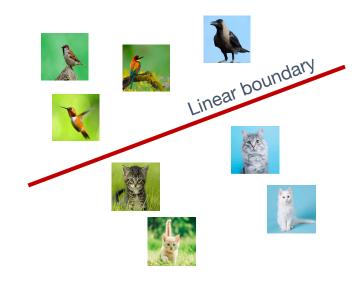
Assess generalization on held-out data

Fine-tuning linear classifiers in modern representation spaces achieves great generalization, but requires supervision

Can we use this paradigm for unsupervised inference of human labelings?

Observation 1:

Many human labeled tasks are linearly separable in a sufficiently strong representation space, e.g., CLIP, DINO and other spaces of foundation models

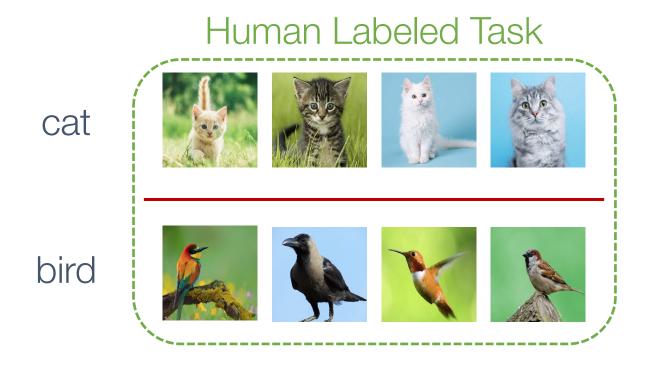


Can we just search for a linearly separable task to recover underlying human labeling?

Oquab et al. <u>DINOv2</u>: <u>Learning Robust Visual Features without Supervision</u>. <u>TMLR 2023 (under review)</u>. Radford et al. <u>Learning Transferable Visual Models from Natural Language Supervision</u>. <u>ICML 2021</u>.

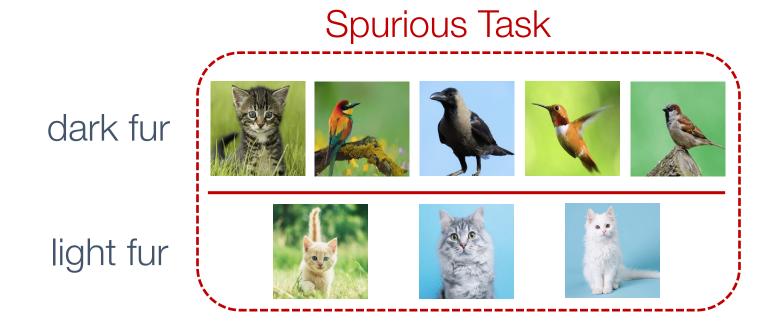
Inductive Biases of Representations

However, one dataset allows for <u>many generalizable tasks</u> which reflect the <u>inductive biases of representations</u> used to represent the dataset



Inductive Biases of Representations

However, one dataset allows for <u>many generalizable tasks</u> which reflect the <u>inductive biases of representations</u> used to represent the dataset

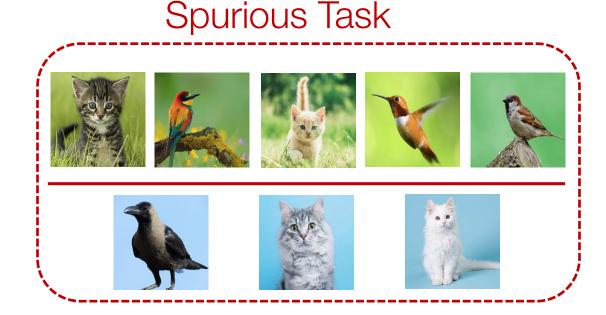


Inductive Biases of Representations

However, one dataset allows for <u>many generalizable tasks</u> which reflect the <u>inductive biases of representations</u> used to represent the dataset

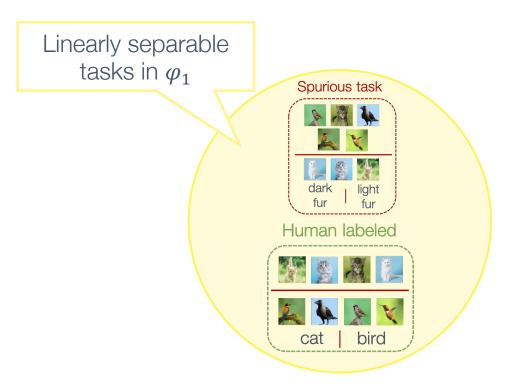
green background

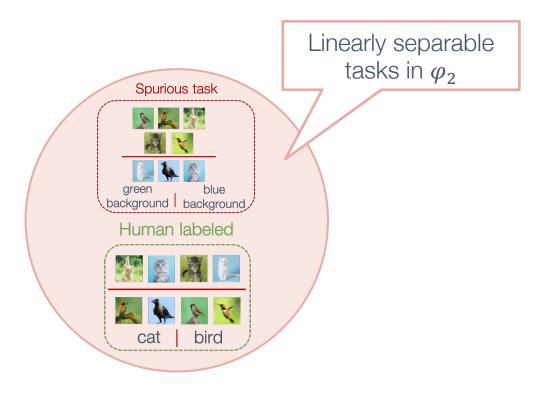
blue background



Observation 2:

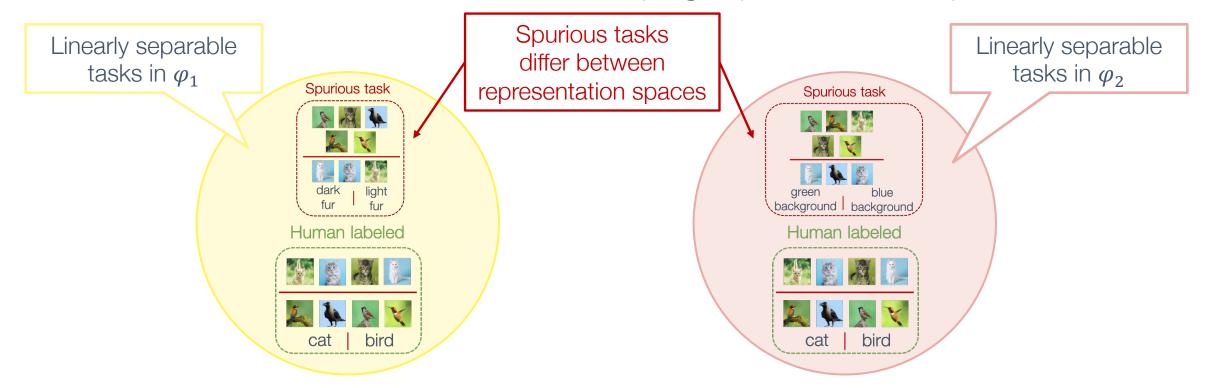
Despite each representation space has its own inductive biases, human labeled tasks are invariant to the underlying representation space





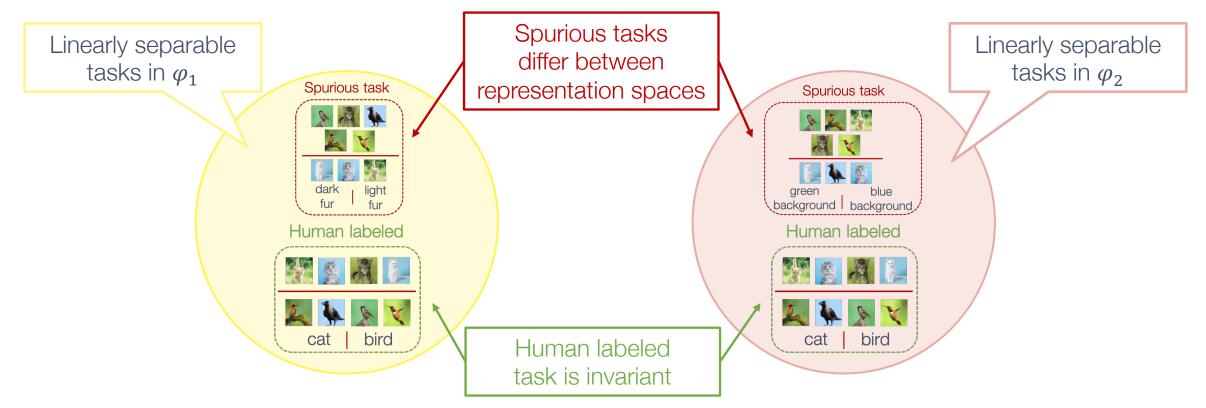
Observation 2:

Despite each representation space has its own inductive biases, human labeled tasks are invariant to the underlying representation space



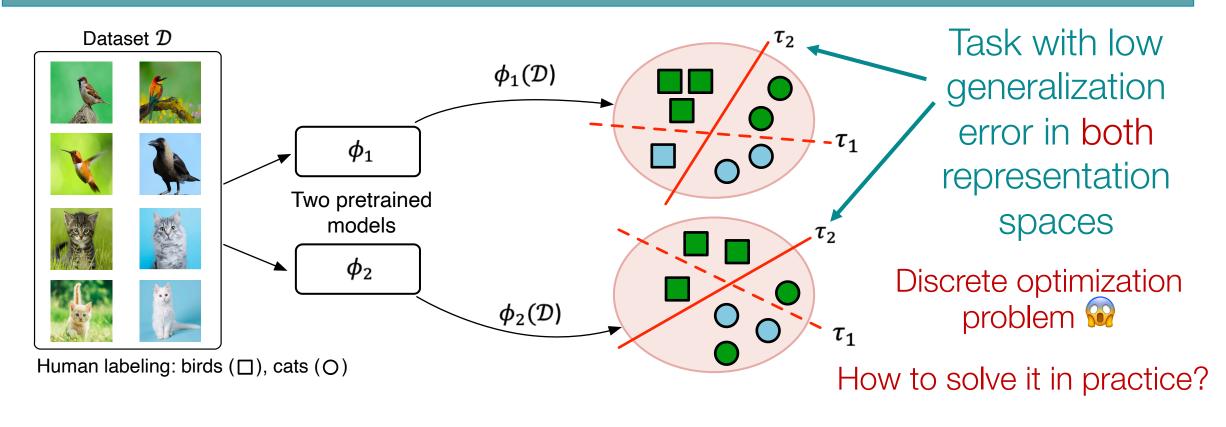
Observation 2:

Despite each representation space has its own inductive biases, human labeled tasks are invariant to the underlying representation space

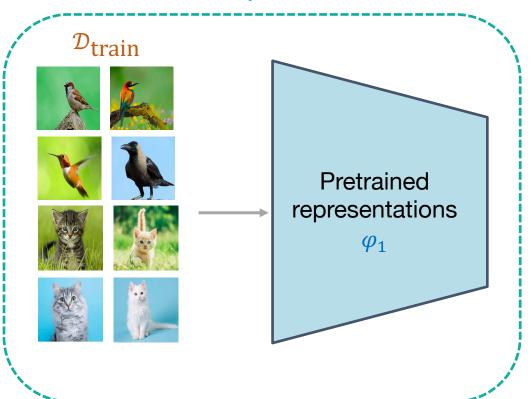


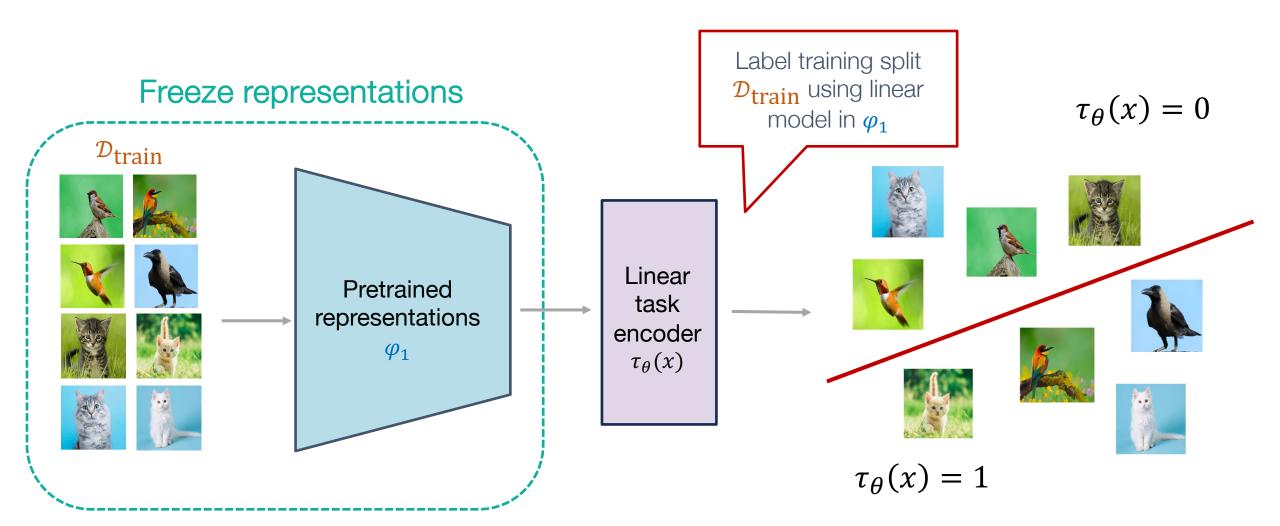
HUME: Discovering Human Labeled Tasks

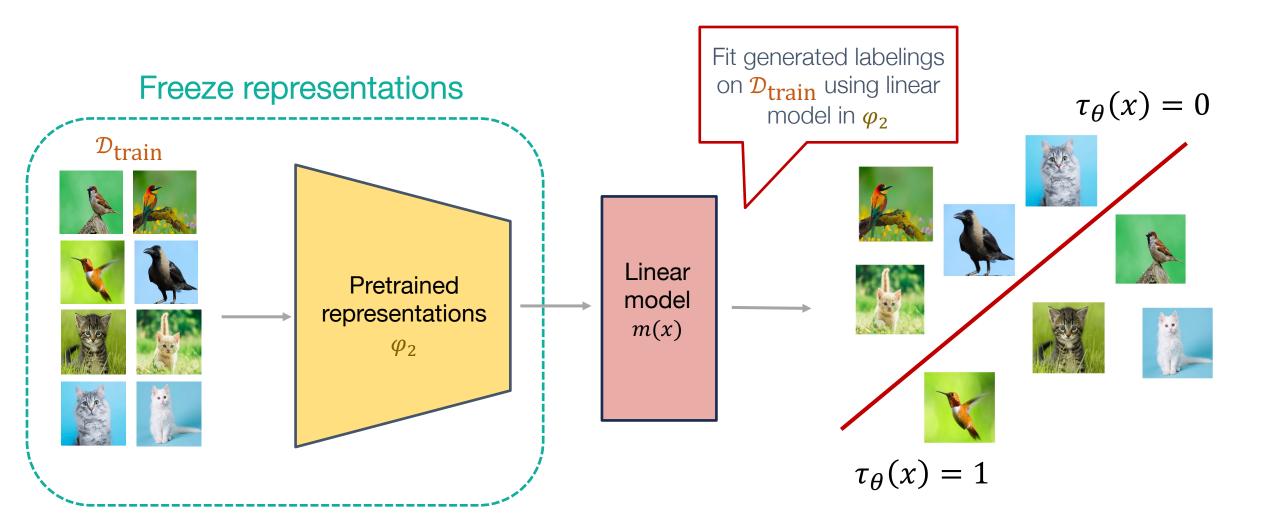
Key Idea: Search for the task which attains low generalization error simultaneously in different representation spaces



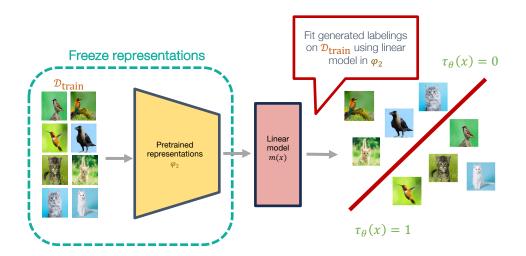
Freeze representations





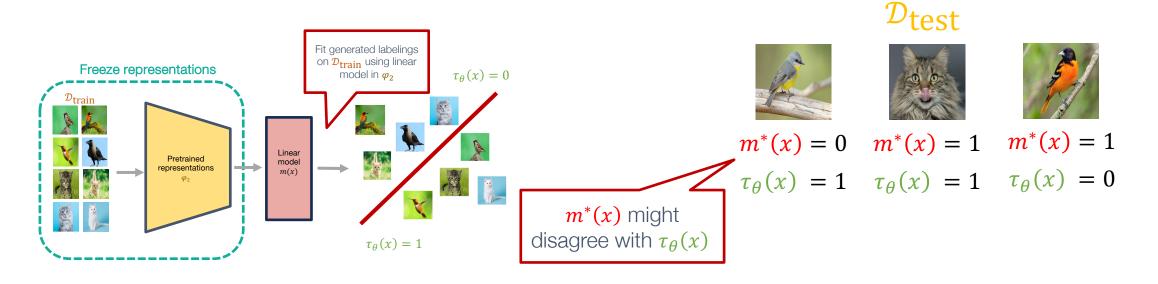


Train on the training split \mathcal{D}_{train} with labeling $\tau_{\theta}(x)$ to get $m^*(x)$



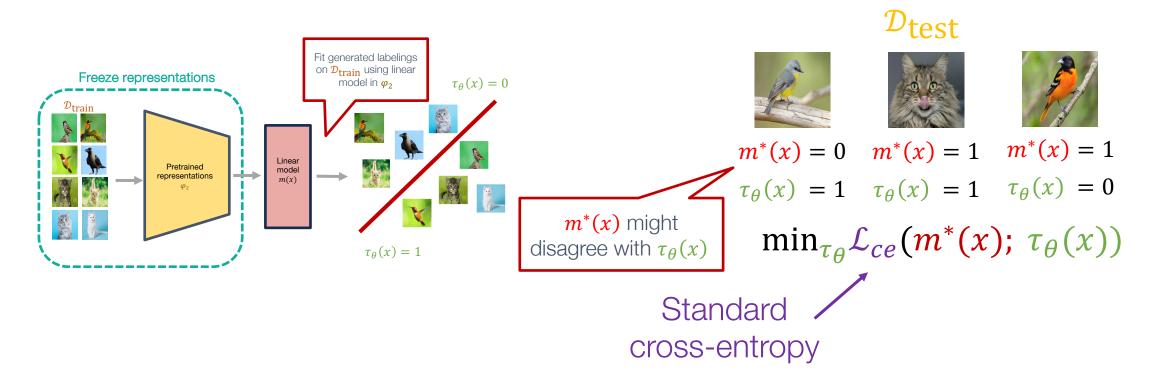
Train on the training split \mathcal{D}_{train} with labeling $\tau_{\theta}(x)$ to get $m^*(x)$

Minimize generalization error of $m^*(x)$ w.r.t. labeling $\tau_{\theta}(x)$ on held-out $\mathcal{D}_{\text{test}}$



Train on the training split \mathcal{D}_{train} with labeling $\tau_{\theta}(x)$ to get $m^*(x)$

Minimize generalization error of $m^*(x)$ w.r.t. labeling $\tau_{\theta}(x)$ on held-out $\mathcal{D}_{\text{test}}$

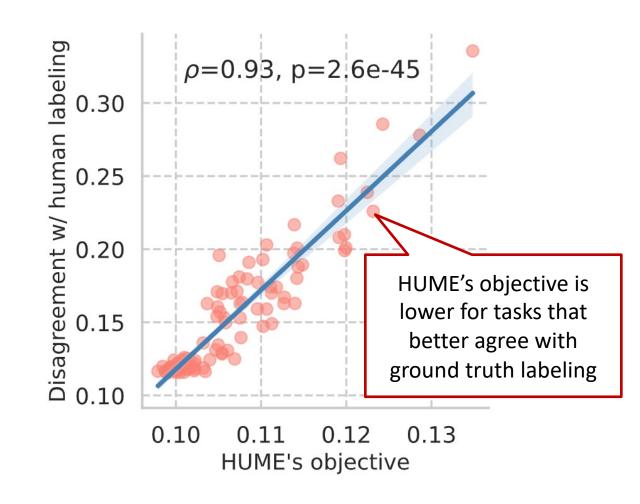


HUME: Agreement with Human Labeling

HUME's objective: generalization error of linear classifiers in different representation spaces

HUME only trains linear classifiers on top of pretrained models!

HUME's objective is strikingly well-correlated with human labeling



HUME Matches Supervised Learning

Supervised Linear Probe in φ_1 - MOCO trained on the target dataset

	STL-10		CIFAR-10		CIFAR-100-20	
Method	ACC	ARI	ACC	ARI	ACC	ARI
MOCO Supervised Linear	88.9	77.7	89.5	79.0	72.5	52.6
HUME MOCO + BiT	90.3	80.5	86.6	75.0	48.8	34.5
HUME MOCO + CLIP	92.2	84.1	88.9	78.3	50.1	34.8
HUME MOCO + DINO	93.2	86.0	89.2	79.2	56.7	39.6

HUME:

 φ_1 - MOCO trained on the target dataset

 φ_2 - BiT, CLIP, DINO large foundation models

HUME matches the performance of supervised model while being fully-unsupervised!

HUME Outperforms Unsupervised Baselines

State-of-the-art Unsupervised Baselines in φ_1 - MOCO trained on the target dataset

-							
		STL-10		CIFAR-10		CIFAR-100-20	
	Method	ACC	ARI	ACC	ARI	ACC	ARI
	SCAN	77.8	61.3	83.3	70.5	45.4	29.7
	SPICE	86.2	73.2	84.5	70.9	46.8	32.1
1	HUME	90.8	81.2	88.4	77.6	55.5	37.7
•		+5%	+11%	+5%	+10%	+19%	+18%

HUME:

 φ_1 - MOCO trained on the target dataset

 φ_2 - DINO large foundation model

HUME outperforms existing unsupervised baselines by a large margin!

HUME Scales to Large Fine-grained Datasets

State-of-the-art Unsupervised Baselines in φ_1 - MOCO trained on the ImageNet-1000

Method	ACC	ARI
SCAN	39.7	27.9
TWIST	40.6	30.0
Self-classifier	41.1	29.5
HUME	51.1	38.1
	+24%	+27%

ImageNet-1000:

- 1000 classes
- 1,281,167 training samples

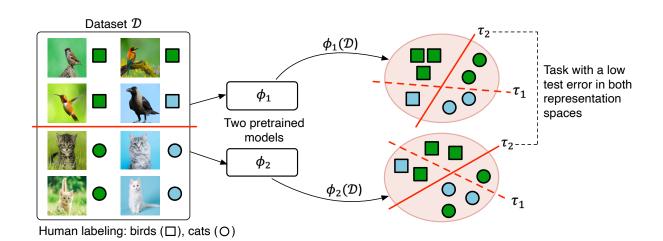
HUME:

 φ_1 - MOCO trained on the ImageNet-1000

 φ_2 - DINO large foundation models

HUME achieves remarkable improvement on large-scale ImageNet-1k!

HUME Framework



HUME:

- Provides a new view to tackle unsupervised learning
- Matches performance of supervised linear probe on the STL-10 and CIFAR-10 datasets
- Achieves state-of-the-art unsupervised performance and more...

Check our paper and code for more details!

Come to our poster to chat about **HUME!**

Tue 12 Dec 3:15 p.m. PST — 5:15 p.m. PST Great Hall & Hall B1+B2 #1012