

Motivation

Given pretrained representations, supervised **fine-tuning** is a standard approach to perform transfer learning to solve a new task

Can we use this paradigm for unsupervised inference of human labeled tasks?

Dataset ${\cal D}$ $\phi_1(\mathcal{D})$ ϕ_1 Two pretrained models ϕ_2 $\phi_2(\mathcal{D})$

Human labeling: birds (\Box) , cats (O)

Step 1:

Label training split \mathcal{D}_{train} using a linear task encoder in the first representation space ϕ_1 .

The Pursuit of Human Labeling: A New Perspective on Unsupervised Learning

Artyom Gadetsky and Maria Brbić

What makes human labeled tasks special?

Observation 1:

Many human labeled tasks are linearly separable in a sufficiently strong representation spaces

Observation 2:

Although each representation space has its own inductive biases, human labeled tasks are invariant to the underlying representation space

Our approach: HUME

Step 2:

Fit generated labeling on the training split $\mathcal{D}_{\text{train}}$ with a linear model in the second representation space ϕ_2 :

 $m^*(x) = \arg\min_{m(x):=w^T \phi_2(x)} \mathcal{L}_{\mathcal{D}_{train}}(m(x); \tau_{\theta}(x))$

Step 3: Minimize generalization error of $m^*(x)$ with respect to a labeling τ_{θ} on a held-out $\mathcal{D}_{\text{test}}$:

 $\min_{\tau_{\theta}} \mathcal{L}_{\mathcal{D}_{test}}(m^*(x); \tau_{\theta}(x))$

- task with a low generalization error in both

Comparison to supervised fine-tuning: **HUME** can match the performance of the supervised model while being fully-unsupervised!

	STL-10		CIFAR-10		CIFAR-100-20	
Method	ACC	ARI	ACC	ARI	ACC	ARI
Supervised FT	88.9	77.7	89.5	79.0	72.5	52.6
HUME (Trans.)	93.2	86.0	89.2	79.2	56.7	39.6

Comparison to unsupervised baselines:

HUME outperforms existing unsupervised baselines by a large margin!

	STL-10		CIFAR-10		CIFAR-100-20	
Method	ACC	ARI	ACC	ARI	ACC	ARI
SCAN	77.8	61.3	83.3	70.5	45.4	29.7
SPICE	86.2	73.2	84.5	70.9	46.8	32.1
HUME (Ind.)	90.8	81.2	88.4	77.6	55.5	37.7

Large-scale	unsuperv	ise

Method	ACC	ARI	
SCAN	39.7	27.9	HUME scales to large
Twist	40.6	30.0	aatasets and achieves
Self-classifier	41.1	29.5	over existing baselines
HUME (Ind.)	51.1	38.1	

Results

HUME's objective:

Generalization error of linear classifiers in different representation spaces

Agreement with human labeling:

HUME's objective is lower for the tasks that better agree with ground truth human labeled task

HUME trains only linear classifiers on top of pretrained models!

ed learning on the ImageNet-1k: